
6880 

(16) Ring expansion of analogous ammonium ylids is also possible. For ex­
ample, methylation of N-benzyl-a-vinylpiperidine with methyl iodide fol­
lowed by treatment with lithium diisopropylamide (—20°) gives N^benzy-
lazacyolonon-4-ene: E. Vedejs and M. Aroo, to be submitted for publica­
tion. 
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The Total Synthesis of (±)-Vindoline 

Sir: 

Vindoline (I),1 a highly functionalized pentacyclic indo-
line, is the major alkaloid of Catharanthus roseus G. Don. 
It lacks physiological activity but vinblastine and vincris­
tine,2 two "dimeric" Vinca alkaloids resulting from its com­
bination with a tetracyclic indole, are clinically useful onco­
lytic agents. In this communication we outline a synthesis of 
vindoline (1) which proceeds with stereochemical control at 
all six chiral centers. 

I H !
 3 

CH COOCH 

Previous experience3 with the acid catalyzed cyclization 
of the vinylogous imide 2 to the tetracyclic isomer 5 sug­
gested the 6-methoxy derivative 3 to be well suited for the 
synthesis of vindoline (1). To our surprise cyclization of 3 
afforded only 9% of the tetracyclic ketone 6 and mostly its 
tricyclic isomer 8 that could not be cyclized further to 6.4 

Thinking that the electron donating 6-methoxy group might 
facilitate the Wagner-Meerwein rearrangement of the ini­
tially formed spiroindolenium ion A to the benzylic ion B,5 

we examined the effect of electron withdrawing substitu-
ents. Acetate, mesylate, and tosylate 4 were prepared and 
their cyclizations examined. The acetate grouping proved to 
be unstable to boron trifluoride, but the highly acid stable 
mesylate6 and particularly the tosylate 4 afforded the 
sought after cyclization products. 

J R = CH3O 

4 R = C 7 H 7 SO 3 

R = H 

R=CH 3 O 

N-COCH 3 

Tosylate 4 was prepared as follows. Condensation of 6-
benzyloxyindole (1O)7 with dimethylamine and formalde­
hyde in aqueous acetic acid gave the Mannich base 11, mp 
132-134°, which after quaternization with dimethyl sulfate 
was treated with aqueous sodium cyanide to give the nitrile 
12, mp 138°. Transformation to the tryptamine hydrochlo­
ride 16, mp 196-199° dec (59% overall yield from 10), was 

accomplished by methylation of 12 with methyl iodide-so­
dium hydride in dimethylformamide,8 hydrogenation of the 
oily nitrile 13 over Pd/C in ethanol-ethyl acetate at 50 psi, 
treatment of the resulting phenol 14, mp 149-152°, with 
tosyl chloride-sodium hydride in tetrahydrofuran, and, fi­
nally, hydrogenation of the tosylate 15, mp 136°, over plati­
num in aqueous ethanol-ethyl acetate containing hydro­
chloric acid. Condensation of the hydrochloride 16 with 1-
chloro-3-ketobutene-l in ethanol-triethylamine provided 
the liquid Z-enamino ketone 17 (83%). Cyclization of 17 
invariably led to the tricyclic secondary amine correspond­
ing to 9 but the £-acetamide 18 (S 5.64 (d, J = 14 Hz), 
7.97 (d, / = 14 Hz)), prepared in 89% yield with acetyl 
chloride-sodium hydride in tetrahydrofuran, when heated 
at 90° in boron trifluoride etherate for 16 min gave the 
stereochemically homogeneous cis-cis3 amine 7 in 89% yield 
and only 2% of the neutral isomer 9. Clearly, Wagner-
Meerwein rearrangement is slower in amide A than in the 
corresponding amine. The phenol 19, mp 260-266° dec, 
available from the tosylate 7 in 79% yield by treatment with 
20% potassium hydroxide in methanol-water at reflux af­
forded the methyl ether 20 mp 176-177° in quantitative 
yield when heated with dimethyl sulfate in acetone over sus­
pended potassium carbonate. Removal of the acetyl group 
in 20 was accomplished with triethyloxonium fluoroborate 
in methylene chloride at room temperature over suspended 
sodium bicarbonate followed by aqueous work-up (82%).9 

C7H7O W ...-OX" 
14 R| = CH2CN ; R 2 = H 

C 7H 7SO 2 

17 IS | 2 R|= COCH3 ; R2= H 

~ " 20 Ri = COCH3 ; R 2 = C H 3 

31 R| = H ; R 2 = C H 3 

Condensation of the air-sensitive amine 21 with acrolein 
in methanol containing sodium methoxide followed by de­
hydration of the crude aldols with methanesulfonyl chloride 
in pyridine gave the unsaturated ketone 22 (oil): ir (CHCI3) 
1685, 1610 cm-', 5 6.96 (d of d, J = 5 Hz and 2 Hz) in 
60% yield. Ethylation with ethyl iodide in ferf-butyl alco-
hol-dimethylformamide containing potassium te/7-butoxide 
yielded a single 0,7-unsaturated ketone 23, mp 168-172° 
(53%), with a-oriented ethyl group (three proton triplet at 8 
0.4!). Condensation of the sodium hydride generated eno-
late of ketone 23 with dimethylcarbonate gave the ketoester 
24 (mixture of keto and enol forms) in 72% yield. Hydrox-
ylation of 24 with 98% hydrogen peroxide in tert-buty\ al-
cohol-dimethoxyethane containing potassium ter/-butoxide 
afforded the internally hydrogen bonded (ir(CHCb) 
3200-2400 cm-1) /3-hydroxy ketone 25, mp 160-161° 
(76%). Reduction of this ketone 25 with various hydrides 
was found to give mixtures of epimeric alcohols but prior 
addition of aluminum chloride (—25°, tetrahydrofuran) fol­
lowed by reduction with sodium bis(2-methoxyethoxy)alu-
minum hydride (—20°) gave a single epimer in 56% yield. 
Apparently the space consuming atoms in the aluminum 
complex C prevent hydride attack from the /3-side of the 
molecule. Acetylation of this alcohol with acetic anhydride-
sodium acetate afforded racemic vindoline (1), mp 203-
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23 R=H 
24 R=CO2CH3 

OCH3 

205°, identical with natural material, mp 172-174°, ac­
cording to chromatographic and spectral comparisons. 
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Synthesis of (±)-7/3,8a-Dihydroxy-9ftlO0-epoxy-7,8,-
9,10-tetrahydrobenzo[a]pyrene, a Potential Metabolite of 
the Carcinogen Benzo[a]pyrene with Stereochemistry 
Related to the Antileukemic Triptolides 

Sir: 

The antileukemic diterpenoid triepoxides, triptolide and 
tripdiolide (1), have been suggested1 to effect their high bi­
ological activity through alkylation of biologically impor­
tant macromolecular thiols at C-9 of the 9,11-epoxide. An-

yl group enhances the rate of epoxide ring opening is also 
known.2 The same stereochemical situation present in trip­
tolide, an epoxide ring and a hydroxyl group two positions 
removed on the same face of a six-membered ring, may also 
be invoked to explain the metabolism induced binding3 of 
carcinogenic polycyclic aromatic hydrocarbons to cellular 
macromolecules. We herein describe the synthesis and reac­
tions of the title compound, a potential metabolite from the 
environmental carcinogen benzo[a]pyrene (BP). 

Our interest in this synthesis was stimulated by the key 
observation of Borgen et al.4 who demonstrated that trans-
7,8-dihydroxy-7,8-dihydro-BP (2a) was much more exten­
sively bound to DNA on further metabolism by liver micro­
somes than were either of two other metabolic dihydrodiols 
or BP itself. The above observation was confirmed by Sims 
et al.5 who suggested diol epoxide 3 as the active binding 
agent and claimed its synthesis6 by the action of w-chloro-
peroxybenzoic acid on diol 2a. Although the question of rel-

HO' 

ative stereochemistry between the hydroxyl groups and the 
9,10-oxirane was not considered in this study,5 there is 
ample precedent to expect that epoxidation should occur on 
the face of the molecule which bears the 8-OH7 to produce 
the isomer of diol epoxide 3 in which anchimeric assistance 
of nucleophilic attack on the oxirane by the 7-OH is impos­
sible as the oxirane and 7-OH are trans. The corresponding 
epimer of triptolide has low biological activity and is 20-
fold slower on reaction with propanediol.1 The isomeric 
sterol epoxides display an 18-fold difference in rates of re­
action with azide.2 

//wtf-l,2-Dihydroxy-l,2-dihydronaphthalenes (2b) was 
chosen as a simple model compound to test possible syn­
thetic routes to the isomers of the BP diol epoxide 3. In so­
lution, the dihydrodiol prefers the conformation in which 
the hydroxyl groups occupy pseudo-equatorial positions,9 

the conformation in which both hydroxyl groups should act 
in concert7 to direct epoxidation such that the 1-OH and 
the oxirane are trans (Scheme I). Reaction of 2b with m-
chloroperoxybenzoic acid (CH2CI2, 0°, 2 hr) cleanly pro­
duced l/3,2a-dihydroxy-3a,4a-epoxy-l,2,3,4-tetrahydro-
naphthalene,10 (4b) in 60% yield (mp 153-155°). As antici­
pated, the reaction was highly stereoselective, and only the 
stereoisomer 4b was isolated. 

Scheme I 

chimeric assistance by the proximate 14|8-hydroxyl group 
markedly enhances the rate of adduct formation between 1 
and simple thiols. A steroid in which a neighboring hydrox-

OH 
5a. b 

a = BP series 
b = naphthalene series 

6a, b 
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